REPRESENTACION DE DATOS

Dato

Representación formal de hechos, conceptos o instrucciones adecuada para su comunicación, interpretación y procesamiento por seres humanos o medios automáticos.

Tipo de dato

Especificación de un dominio (rango de valores) y de un conjunto válido de operaciones a los que normalmente los traductores asocian un esquema de representación interna propio.

Clasificación de los tipos de datos

En función de quién los define:

- Tipos de datos estándar
- Tipos de datos definidos por el usuario

Tipos de datos primitivos

byte short int long float double char

Datos de tipo numérico

- Números enteros byte, short, int, long

- Números en coma flotante float, double

Datos de tipo carácter char

Codificación de los datos en el ordenador

En el interior del ordenador, los datos se representan en binario.

El sistema binario sólo emplea dos símbolos: 0 y 1

- Un bit nos permite representar 2 símbolos diferentes: 0 y 1
- Dos bits nos permiten codificar 4 símbolos: 00, 01, 10 y 11
- Tres bits nos permiten codificar 8 símbolos distintos: 000, 001, 010, 011, 100, 101, 110 y 111

En general,

con N bits podemos codificar 2N valores diferentes

N	2 ^N
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024
11	2048
12	4096
13	8192
14	16384
15	32768
16	65536

Si queremos representar X valores diferentes, necesitaremos N bits, donde N es el menor entero mayor o igual que log₂ X

Representación de datos de tipo numérico

Representación posicional

Un número se representa mediante un conjunto de cifras, cuyo valor depende de la cifra en sí y de la posición que ocupa en el número

NÚMEROS ENTEROS

Ejemplo: Si utilizamos 32 bits para representar números enteros, disponemos de 2³² combinaciones diferentes de 0s y 1s:

4 294 967 296 valores.

Como tenemos que representar números negativos y el cero, el ordenador será capaz de representar

del -2 147 483 648 al +2 147 483 647.

NÚMEROS REALES (en notación científica) (+|-) mantisa x 2^{exponente}

- ➤ El ordenador sólo puede representar un subconjunto de los números reales (números en coma flotante)
- * Las operaciones aritméticas con números en coma flotante están sujetas a errores de redondeo.

Representación de textos

Se escoge un conjunto de caracteres: alfabéticos, numéricos, especiales (separadores y signos de puntuación), gráficos y de control (por ejemplo, retorno de carro).

Se codifica ese conjunto de caracteres utilizando n bits. Por tanto, se pueden representar hasta 2ⁿ símbolos distintos.

Números enteros

byte, short, int, long

4 tipos básicos para representar números enteros (con signo):

Tipo de dato	Espacio en memoria	Valor mínimo	Valor Máximo
byte	8 bits	-128	127
short	16 bits	-32768	32767
int	32 bits	-2147483648	2147483647
long	64 bits	-9223372036854775808	9223372036854775807

Números en coma flotante

float, double

		Mínimo (valor absoluto)	Máximo (valor absoluto)	Dígitos significativos
float	32 bits	1.4 x 10 ⁻⁴⁵	3.4×10^{38}	6
double	64 bits	4.9×10^{-324}	1.8×10^{308}	15

Caracteres

char

Tipo	Espacio en
de dato	memoria
char	16 bits

Literales de tipo carácter

Operadores aritméticos

Operador	Operación	
+	Suma	
_	Resta o cambio de signo	
*	Multiplicación	
/	División	
9	Módulo (resto de la división)	

Operadores relacionales

- Operadores de comparación válidos para números y caracteres
- Generan un resultado booleano

Operador	Significado
==	Igual
!=	Distinto
<	Menor
>	Mayor
<=	Menor o igual
>=	Mayor o igual

Operadores lógicos/booleanos

- Operandos booleanos.
- Tienen menos precedencia que los operadores de comparación.

Operador	Nombre	Significado
!	NOT	Negación lógica
& &	AND	'y' lógico
	OR	'o' inclusivo
^	XOR	'o' exclusivo